
Instructor: Jamon Camisso
ITEC 2210 Chat: mattermost.itec2210.ca
Email: jamon@yorku.ca
Website: https://eclass.yorku.ca/

Date/Time: Wednesday, 19:00-22:00
Location: Zoom / ACE 003
Office hours: Via Mattermost any time

AP/ITEC 2210 3.0 A:
System Administration
Fall 2023

https://mattermost.itec2210.ca
mailto:jamon@yorku.ca
https://eclass.yorku.ca/eclass/course/view.php?id=3805

 Class 10 - Infrastructure as code

– Announcements

– Course Evaluations:

○ https://courseevaluations.yorku.ca/

– Final Exam:
○ 11 Dec, 19:00, room - DB 006

(╯°□°）╯︵ ┻━┻

○ / (╯°□°）╯︵ ┻━┻

https://courseevaluations.yorku.ca/

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

“The code we use to control our
infrastructure is not just part of our
infrastructure, it is our infrastructure”
PSNA p.55

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– My reductive version:

○ Don’t change a system, program systems

○ System Administration (these days) should be more about
automation and programmatic interaction with infrastructure than
hand crafting a web or database server configuration

○ Code and data determine how an environment is provisioned and
operates

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– A few core principles:

○ Machine-processed definition files
○ Document using code
○ Use version control (VCS)
○ Continuous Integration/Continuous Delivery (CI/CD)
○ Small batches principle - many small batches of changes
○ Continuous availability - strive for no downtime

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– A few core principles:

○ Machine-processed Definition Files

■ Changes are made to config management files, not to servers

■ Configuration files define what a system should look like,
execution engine makes it so

■ If you have to login to a host to make a change you’re fired!

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– A few core principles:

○ Document using code

■ Use IaC manifests to document what a system should look like

■ How environments are built

■ Diagrams, documentation grow stale quickly

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– A few core principles:

○ Use version control (VCS) for IaC manifests

■ Source code, templates, static files, and data

■ Who made a change, when, why

■ Easy auditing and roll back if there are problems

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– A few core principles:

○ Continuous Integration/Continuous Delivery (CI/CD)

■ Test each change on commit/push - take it live if it passes (CD)

■ Helps with catching errors early on

■ Allows simulating changes to live environments

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– A few core principles:

○ Small batches principle - many small changes cf. a few large sets

■ Small changes make small bugs

■ Many small changes means less blocking others work

■ Reverting is easier when a small change can be cherry-picked

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– A few core principles:

○ Continuous availability - strive for no downtime

■ Allows more frequent changes

■ Enables small batches principle

■ Also ensures good architecture and environment design

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– Pets and cattle analogy from PSNA CH 3

○ Servers can be pets, each one a unique and special snowflake

○ Or like cattle, with thousands that are similar enough to be treated
the same way, or in groups according to functionality

■ Group based on common characteristics - white, brown, dairy
■ Servers can similarly be grouped - web, database, firewalls

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– Neither is necessarily better or worse, but one approach is a lot more work
when it is time to scale up, or make changes, or teach new hires, or …

– You will probably start out making pets as you learn about different tools
and systems. That’s OK! Trick is to do it again, and automate it

– However many times, a pet project that you intend to automate just works,
goes live, and the automation never gets finished. Try to automate, don’t
let anything go live unless it can be programmatically duplicated

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– Benefits of IaC are in three main areas:

○ Cost - manual labour is reduced, or only incurred for up front design

○ Speed - tasks can be completed quickly, and in parallel

○ Risk - changes can be tested in dev or beta environments first

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– Other benefits:

○ Environments are visible to others, not just SAs
■ Better cross-team collaboration
■ Better on-boarding new hires
■ Makes people accountable for decisions

○ Security & risk audits can focus on config management, not
checking every single system

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– Bug detection benefit - IaC allows for:
○ Smoke tests - does it work? Basic syntax check/linting

○ Unit tests - run portions of code, verify outputs match inputs

○ Integration tests - try running code in a pared down environment

○ Acceptance tests - customer can verify functionality with live data

○ Load tests - run benchmarks, look for performance regressions

 Class 10 - Infrastructure as code

 Class 10 - Infrastructure as code

– Infrastructure as code / configuration management

– Idea is to get infrastructure (bottom half) to look like software (top half)

– Packages and images can be cloned, version controlled, distributed and
installed just like software

– Tools like Ansible, Puppet, CFengine, Salt, Docker, Kubernetes, Mesos
make this easy

– Combined with a CI system like Jenkins, Gitlab CI, Travis CI etc.
infrastructure and applications can be deployed & tested together

 Class 10 - Infrastructure as code

– Version control systems

 Class 10 - Infrastructure as code

– Version control systems (VCS)

– Idea is each line and change can be attributed to someone, but can also be
reverted or modified as needed

– Example looks like a Golang code to integrate with OpenTSDB

○ If I had to guess, I’d say it is for monitoring & alerting integration

– Point is, commit logs and annotation show who did what, when & why

http://opentsdb.net/

 Class 10 - Infrastructure as code

– Version control systems (VCS)

– Even in places where there are explicit peer reviews to changes, changes
will get missed

– Such changes are affectionately known as ‘cowboy’ changes. Imagine:
○ “I cowboyed a change to a sysctl setting to allow tracking more

connections”

○ 2 years later: “Why doesn’t this new server that’s 5x better hardware,
running a clone of the old server’s disks fall over with only half as
many connections as the old system?”

 Class 10 - Infrastructure as code

– Version control systems (VCS)

– Cowboys happen in the worst places - storage, DNS, firewalls, routers

– See also PSNA B.2.4 (short read)

– To avoid issues, any cowboy change should be captured in a VCS, even if it
is just local to the system in question

– As simple as ‘git init /etc/’

 Class 10 - Infrastructure as code

– Configuration Management

– Various open source systems already mentioned:

○ Ansible, Puppet, Chef, CFengine, Saltstack

– Use Declarative manifests or languages to achieve a desired final result

○ CM system can be imperative or declarative behind the scenes, you
just care about declaring what a system should look like

– Many use Domain Specific Language (DSL) to achieve final result

 Class 10 - Infrastructure as code

– Configuration Management

– Idea with Declarative systems and DSL is you define what something
should look like, not the steps to make it happen

– CM system will compile or interpret your manifests and run OS and
application specific modules or commands to achieve final goal

○ All will know yum on Redhat/Fedora/Centos, apt on Debian/Ubuntu

○ Most will have a module for MySQL, PostgreSQL, sqlite, etc

 Class 10 - Infrastructure as code

– Configuration Management

– Idempotent: CM system will only make changes if needed

○ Code can be run a million times, actual change or operation will only
run if it is needed

■ Can be thought of as if/else conditional

■ If Apache is not installed, install it

■ Else (implicit Apache is installed), don’t install it (do nothing)

 Class 10 - Infrastructure as code

– Configuration Management

– Idempotent: CM system will only make changes if needed

○ Harder to implement than it sounds but very important to get right

■ Ensures all changes are predictable

■ Efficient - most CM runs will result in no changes, fast to run

■ Allows chaining actions based on when changes happen

 Class 10 - Infrastructure as code

– Configuration Management

– Idempotent: CM system will only make changes if needed

○ Also makes it much harder to leave a cowboy change in place!

○ For example, if puppet is set to run every 15 minutes and someone
made a change, it would be reverted back after 15 minutes at most

■ Useful to ensure cowboys get reverted, but also (sometimes) to
make and test changes and get back to a known state

 Class 10 - Infrastructure as code

– Configuration Management

– Guards and Statements

○ Guards check to see if a change exists on a system

○ Statements are the code that make the change (e.g. your manifest)

○ Guard is run before and after a change to ensure a statement has
been run successfully (in the past, or during current CM invocation)

○ Guard re-invocation is key to idempotency - checks same condition

 Class 10 - Infrastructure as code

– Configuration Management

– Dry-run modes

○ With guards, a change can be evaluated in terms of what it will look
like, without running the actual statement

○ Just run a guard to check for a desired state - if it doesn’t exist, the
set of needed changes is known

■ (puppet freebie: puppet agent --test --noop (optional --debug))
■ (ansible freebie: ansible-playbook --list-tasks)

 Class 10 - Infrastructure as code

– Configuration Management

– Probably best to not roll your own. If you do how will you:
○ Handle concurrency?
○ Deal with errors or failures?
○ Make changes to the CM architecture itself?
○ Ensure secure communication channels?
○ Monitor the CM system itself?
○ Test the CM system?
○ Teach others how to use it?
○ Add new features?
○ Most big CM systems out there have dealt with these issues***

 Class 10 - Infrastructure as code

– Deploying IaC/CM in an organization

– Start small, (even at home with a laptop or desktop computer)

– Get in the habit of defining what your system should look like - treat any
change you’re making directly on a system as a cowboy change

○ Manage individual files or directories to start
○ Add in desired packages, services, data
○ Scale to managing small parts of many systems
○ Version control your manifests/changes
○ Eventually use an OS image with just enough to load a CM agent

 Class 10 - Infrastructure as code

– Deploying IaC/CM in an organization

– Once you have a base image with an agent baked in, integrate with CI/CD

– Have your CI system (Jenkins, Travis CI, Gitlab CI etc.) provision a system
and then bootstrap the CM agent

– Once you have an instance running with an agent in CI, run tests against
CM manifests to test changes

– From there, automate environment creation, add containers, orchestration

 Class 10 - Infrastructure as code

– Collaboration benefits

– Peer review - hopefully benefit is self-evident here

○ (also lets you share responsibility for bad changes!)

– Helps mentor new system administrators or other team members

– Enables self-service options, where SAs just approve changes from
developers instead of having to make changes from start to finish

 Class 10 - Infrastructure as code

– Downsides & Myths

– Steep learning curve for some systems

○ Thousands of excellent online tutorials

○ Many books on each system

○ Start small, you’ll become an automation fanatic very quickly once
you get a feel for how easy changes can be versus manual configs

○ Making ethernet cables really isn’t fun, automation is

 Class 10 - Infrastructure as code

– Downsides & Myths

– Dangerous, risk of a sorcerer’s apprentice situation
○ With VCS systems, even far reaching changes can be rolled back
○ Automated tests (CI) can prevent a runaway situation from occurring

– Manual configuration is better
○ Automated linting, peer review, testing make this a non-issue

– Automation will put you out of a job
○ This should be your goal! There’s always more work to be done, try to

make yourself totally redundant with automation

