
Instructor: Jamon Camisso
ITEC 2210 Chat: mattermost.itec2210.ca
Email: jamon@yorku.ca
Website: https://eclass.yorku.ca/

Date/Time: Wednesday, 19:00-22:00
Location: Zoom / ACE 003
Office hours: Via Mattermost any time

AP/ITEC 2210 3.0 A:
System Administration
Fall 2023

https://mattermost.itec2210.ca
mailto:jamon@yorku.ca
https://eclass.yorku.ca/eclass/course/view.php?id=3805

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– Had an issue with launchpadlibrarian.net - our build farm
storage cluster that tracks metadata like build logs, mirror
probes etc. ~180TB of space with 3X data replication.

– Users were reporting intermittent timeouts, with no actual
build errors

– Alerts showed it had been happening for a month or so

○ For example: ‘df’ does what? Which are some useful
features? Show a feature in common usage:
■ df -h
■ df -i
■ df -l

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– My colleagues, manager, even the Director of IS Operations
had all tried to figure it out, to no avail

– This happened first semester I taught this course after the
troubleshooting lecture - I decided to solve the problem

– 1. Started with a catch up discussion with a colleague who
had spent a day on the issue, which he inherited from
another colleague (rubber duck session, but with a person)

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– They had been looking at every system involved, and when
I was brought in, the task they were on was tcpdumping
and looking at core routers between datacentres.

– Sounds familiar from last week? Happens all the time when
the issue is vague and you’re fumbling around

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– Colleagues had all been bisecting, looking at various
components and trying to prove or disprove their theories
about which was misbehaving

– I decided to start at the beginning with HTTP errors per
user reports, eliminate, and work backwards

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– Architecture looks like this:

○ Apache web front-ends -> Haproxy load-balancers
○ Haproxy load-balancers -> Librarian App processes
○ Librarian App processes -> Swift storage proxy
○ Swift storage proxy -> Backend storage nodes
○ Backend storage nodes -> individual /dev/sd* disks

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– Started at the beginning:
○ Apache logs we showing generic timeout messages, but

importantly, no errors

○ Haproxy status page shows backend App processes were
up and healthy, with a 5% or so error rate

○ Backend App processes showed application logic was
fine, but incoming files were timing out being written

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– At this point, all HTTP traffic was flowing as expected, so it
could be eliminated

– Swift proxy, and all swift backend servers were responding
normally, no alerts, performance looked fine. Start
eliminating again and look at logs

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– Swift proxy logs showed something interesting:

– Jan 11 09:13:53 uwan proxy-server: ERROR with Object
server 10.34.2.7:6000/sdc re: Trying to HEAD
/v1/AUTH_4e55663613384335a47336ffe0dd9727/librarian_
6485/3242856883: ConnectionTimeout (0.5s) (txn:
tx6fceb7689fb1443cb059b-005c385e50)
(client_ip: 91.189.89.136)

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– First promising lead showing the ConnectionTimeout error,
which maps precisely to HTTP timeouts users were seeing

– Also helpful: a ‘txn’ that can be used to look for
corresponding requests across servers (grep
tx6fceb7689fb1443cb059b-005c385e50 through logs)

– Better still, an IP address of a backend swift storage node

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– Said storage node had recently (as of Dec. 15) had a drive
replaced.. See where this is going? All logs showed that IP.

– Jan 11 18:44:57 takam object-replicator: rsync:
get_xattr_data:
lgetxattr(""/srv/node/sdb/objects/138882/ffb/87a09fc44e6d
8108ab480b4397f81ffb/1448600942.51777.data"","user.swif
t.metadata",0) failed: Permission denied (13)

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– On that host, takam, /srv/node/sdb was indeed the drive that
had been replaced! Permission denied is damning:

– jamon@takam:/srv/node/sdb$ ls -alh /srv/node/sdb
drwxr-xr-x 4 nagios nagios 31 Mar 17 2015 accounts
drwxr-xr-x 97 nagios nagios 4.0K Aug 12 2017 async_pending
drwxr-xr-x 28 nagios nagios 330 Apr 29 2016 containers
drwxr-xr-x 18851 nagios nagios 404K Jun 22 2018 objects
drwxr-xr-x 2 nagios nagios 6 Aug 12 2017 tmp

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– Knowing about swift, and looking at say, /srv/node/sdc (a
working drive) owner and group were swift:swift

– jamon@takam:~$ sudo ls -alh /srv/node/sdc
 drwxr-xr-x 10 swift swift 109 May 11 2015 accounts
 drwxr-xr-x 2 swift swift 6 Jan 16 10:43 async_pending
 drwxr-xr-x 914 swift swift 20K Dec 21 09:05 containers
 drwxr-xr-x 11918 swift swift 492K Jan 16 14:02 objects
 drwxr-xr-x 3 swift swift 20 Sep 9 2015 quarantined

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– I changed user/group using ‘chown -R swift:swift’ and once
that completed (took 2 days) the errors went back to normal

– Anyone could have done the same rubber duck debugging,
elimination, successive refinement, and looking for logs

– Point is, you have to be methodical, aware of ongoing work in
your team, and have proper logging to save days of work

 Lecture 2 - Troubleshooting cont.

– Troubleshooting anecdote:

– We’ve since built monitoring to check for incorrect
permissions

– Implemented a +1 process to swift specifically (get a peer to
review work before committing changes)

– Correlated past alerts since Dec. 15 and sent out an incident
report (internally) to ensure we hold ourselves accountable

 Lecture 2 - Launching a New Service

– Readings:
○ PSNA chapter 19 - Service Launch: Fundamentals

– New service launch can range in scope

○ Could be something small like a connectivity checker

○ Could be large like iTunes store, serving millions of
new devices the first day of a new product launch

 Lecture 2 - Launching a New Service

– First priority: plan for problems

“A clever person solves a problem. A
wise person avoids it.”

 -- Albert Einstein

 Lecture 2 - Launching a New Service

– First priority: plan for problems

– Like everything else SA, the process and knowledge you
gain accumulates over time

– Planning around problems means when they do arise, you
and everyone else involved will know exactly what to do

– Defining and planning for problems is one of the best ways
to refine processes - if everything always went right and
worked, there’d be no incentive to improve processes

 Lecture 2 - Launching a New Service

– First priority: plan for problems

– NASA example of Apollo 7, 8, 12 launches is a great one:

– Even in a space ship with thousands of subsystems, each
one had well thought out failure scenarios and playbooks

– Those launches had problems, but they were planned for

– When things went wrong with Apollo 13, they were wrong
because the cause of the problem was unknown

 Lecture 2 - Launching (an Apollo mission)

http://www.youtube.com/watch?v=sJ3Q3kL7jcA

 Lecture 2 - Launching a New Service

– Hopefully your SA roles won’t be a matter of life and death, but planning
for problems (and there were many with Apollo missions) worked

– Listen to every team checking in & confirming their launch checklist at
~2m:30s. Then listen to troubleshooting an unplanned for problem.

– 6:11 “Everybody, think of the kinds of things we'd be venting”

– 7:32 “Let's not make it any worse by guessing”

– 8:18 “The thing that concerns me is we had a problem, we don't know the
cause of the problem - I don't know why we've lost them”

–

 Lecture 2 - Launching a New Service

– The Six Step Launch Process:

– Two main components: ready list, and iteration

– Ready list is a living document, and changes as
requirements and features are added, bugs and
regressions are found, etc.

– Launch itself is iterative, with phases contributing back to
the overall ready list, until everything is live

 Lecture 2 - Launching a New Service

– The Six Step Launch Process:

– 1. Define the ready list
– 2. Work the ready list
– 3. Launch the beta service
– 4. Launch the production service
– 5. Capture lessons learned
– 6. Repeat

 Lecture 2 - Launching a New Service

– Define the ready list:

– A list of tasks or assertions, that when completed means
things are ready for launch

– It is the main measure of progress in preparing for a launch

– Usually has four categories of items:

 Lecture 2 - Launching a New Service

– Define the ready list:

– 1. Must have features

– 2. Would be nice features

– 3. Bugs and regressions

– 4. Assertions and approvals

 Lecture 2 - Launching a New Service

– Define the ready list:

– 1. Must have features

○ Any must have feature is an agreed upon commitment
to deliver a specific feature, by a given time within a
release process

○ Use this list as a contract between you (the SA and
your IT organization) and the customer to keep
everyone informed and set expectations

 Lecture 2 - Launching a New Service

– Define the ready list:

– 2. Would be nice features

○ Crucial to keep track of these, and separate from must
have features, even if you know they won’t be included

○ Keeps everyone on the same page in terms of
expectations, and keeps you from being distracted
from the must have list (cf. one big list of everything)

 Lecture 2 - Launching a New Service

– Define the ready list:

– 3. Bugs and regressions

○ Bugs happen, and sadly so do regressions. Track and
triage them so that they’re all documented.

○ Tracking also reduces duplication of effort, since
everyone can see who is working on a bug

 Lecture 2 - Launching a New Service

– Define the ready list:

– 4. Assertions and Approvals

○ Everything that must be ‘true’ before launch

○ Technical tasks, and organizational ones
■ Legal, communications, and marketing approval
■ CEO has signed off
■ Infrastructure capacity is confirmed
■ Connectivity is established and reliable etc. etc.

 Lecture 2 - Launching a New Service

– List attributes

– Each item should have at least:

○ Title
○ Priority
○ Owner
○ History of the task
○ Current status

 Lecture 2 - Launching a New Service

– List attributes

– Priority is worth looking at more closely:

○ Standardize across projects. In many organizations,
people move between groups. A standard ensures
continuity, and that everyone has the same
understanding of what ‘critical’ or ‘low priority’

○ Not required priority is a nice way of making things
visible, and not being dismissive

 Lecture 2 - Launching a New Service

– S.M.A.R.T Goals and Objectives

○ Specific: The goal addresses a specific area for
improvement

○ Measurable: The goal’s success (or progress) can be
quantified

○ Achievable: It can be realistically achieved given
available resources

○ Relevant: It is worthwhile, and in line with broader
goals

○ Time-bound: The goal has a deadline

 Lecture 2 - Launching a New Service

– S.M.A.R.T Goals and Objectives: example

– Title: “Deploy VRRP on production load balancers”

○ Specific: the task is to do one thing - could have a
sub-task to ‘test VRRP…’ with same list attributes

○ Measurable: Either it is or isn’t deployed
○ Achievable: Less important than ‘Write a full CMS’
○ Relevant: Not important if there’s no need for it
○ Time-bound: Next week, next month, or next year?

 Lecture 2 - Launching a New Service

– Ready list visibility

– A list is no good if only you can see it, so share it widely

– Sharing ensures everyone buys in, and makes it a central
point of reference, instead of having silos each doing their
own thing

– If you have external stakeholders, you may only share a
subset of the list, or even subset of attributes of each item

 Lecture 2 - Launching a New Service

– Ready list visibility

– Storage and distribution methods:

○ Bug or ticket system with tags
○ Bug or ticket system with watchlists
○ Kanban board
○ Online/shared spreadsheet
○ Offline coordinator (e.g. project manager, release

coordinator)

 Lecture 2 - Launching a New Service

– Do it!

– Set clear expectations (again, beginning with title)

– Make sure there’s some kind of deadline
○ Try to let the delegate set deadline
○ Most of the time it will be sooner than expected
○ Doing it this way lets people have agency
○ Obviously, bear in mind overall schedule constraints

 Lecture 2 - Launching a New Service

– Do it!

– Monitoring progress

– Some groups use a weekly status meeting to go over ready
list, re-triage features, bugs, timelines

– Many teams will use a ‘stand up’ meeting each day where
everyone stands up (to keep meetings short)

○ What was done, what you’re doing, what’s blocking

 Lecture 2 - Launching a New Service

– Launching a beta service

– A service or a process can be in beta, just as much as a
piece of software

– Use a staging area to deploy pre-release version

– You’ll want a few different areas to use in staging

 Lecture 2 - Launching a New Service

– Launching a beta service: staging environments

○ Dev, also known as sandbox
○ QA, lands developer releases, accepts or rejects based

on tests, and generates a list of bugs or regressions
○ UAT, User Acceptance Testing, for external customers

to approve a release
○ Beta, a subset of customers or users get early access
○ Production, live users of a service

 Lecture 2 - Launching a New Service

– Launching a beta service: staging environments

○ Regardless of Agile, XP, waterfall, there need to be
well-defined criteria to promote from one
environment to another

○ Dev -> QA push can be automated, but QA can entail
manual tests that must pass, thus they gate the
release

○ Assertions and approvals are also gating criteria

 Lecture 2 - Launching a New Service

– Launching a production service

○ Do the launch once everyone has agreed the ready list
up to the production roll out is complete

○ Launch is just doing technical tasks that remain, while
being sure to communicate them to everyone involved

○ Always try to do gradual roll-outs, e.g. 10% of users,
then 20%, then 50%, then 100%

 Lecture 2 - Launching a New Service

– Capture lessons learned: launch retrospective
○ Agree about needed improvements

○ Educate everyone about issues visible to only a few

○ Explain problems to management, particularly ones
large enough that their resolution will require
additional resources

○ Share what you learned to the entire organization so
all can benefit.

 Lecture 2 - Launching a New Service

– Capture lessons learned: launch retrospective

○ Schedule a live meeting for the retrospective

○ Include remote participants, or record for later review

○ Design a retrospective document

○ Useful to share issues, discuss shortcomings, and keep
others from repeating mistakes, or duplicating effort

 Lecture 2 - Launching a New Service

– Capture lessons learned: launch retrospective

○ Document should contain:

■ Executive summary - what happened, when, good
and bad, what to do next time. KISS principle

■ Timeline - start, finish, significant milestones
■ Successes - Yay
■ Failures - blameless! Stick to facts
■ Short-term changes - what to do better next time
■ Long-term changes - what to fix in the future

 Lecture 2 - Launching a New Service

– Capture lessons learned: launch retrospective

○ Important to feed any short term and long term
changes back into the bug/ticketing system

○ Ensures that subsequent releases track issues, and
that nothing is forgotten if it wasn’t addressed in the
launch of the service

○ In the Apollo 13 example, you can be sure failures
were tracked, new temp. sensors were used in 14-17

 Lecture 2 - Launching a New Service

– Repeat

○ Most software spends most of its life running and
needs maintenance, new releases, or upgrades

○ Same process for a new service can be used, just on a
smaller scale or time frame

 Lecture 2 - Launching a New Service

– Launch Readiness Criteria

○ Launch criteria are not the same as launch
procedures

○ Criteria are assertions, or non-technical steps that
need to be completed, e.g. load testing is done, scaling
is planned

○ Procedures are the checklist of steps to complete a
launch, like DNS updates, firewall changes etc.

 Lecture 2 - Launching a New Service

– Launch Readiness Criteria
○ Criteria lists grow over time, but a basic list will need:

■ Monitoring and escalation policies in place
■ Backups and restores tested and working
■ Authentication, authorization, access control
■ SLA (service level agreement with customer)
■ Support/service request tool and process in place
■ Documentation is complete (how to use this?)
■ Ops Documentation is complete (how to run this?)
■ User training is done. Otherwise, what’s the point?
■ Load testing is complete (does it work under load?)

 Lecture 2 - Launching a New Service

– Launch Readiness Criteria

○ Criteria lists grow over time, and become unwieldy

○ Be cautious about adding new items, and diligent
about removing obsolete items

○ Each item means work for someone. Gradually, people
can become fearful of the LRC list, work around it,
delay because of it, or just ignore it altogether

 Lecture 2 - Launching a New Service

– Launch Readiness Criteria

○ Add items based on actual experiences, not
hypotheticals

○ Update and rewrite items, and remove what you can
■ Point about being liable for removing is important
■ Have everyone agree to remove an item

○ Use automation to remove items! E.g. sandbox setup,
database pushes from prod -> beta -> UAT -> QA -> Dev

 Lecture 2 - Launching a New Service

– Launch Calendar

○ Have an organization-wide launch calendar for future
launches

○ Lets other schedule around, or with your launch

○ Keeps everyone accountable by broadcasting a
commitment to a date, even if it will be missed

○ In non-Agile environments, define repeat windows

 Lecture 2 - Launching a New Service

– Common Problems - List?
○

 Lecture 2 - Launching a New Service

– Common Problems
○ Failure in production

○ How many times have I heard this:

○ “It worked on localhost”

○ Stems from different teams owning different
infrastructure, or drift over time

○ Use the same processes in every environment

 Lecture 2 - Launching a New Service

– Common Problems

○ Unexpected Access Methods

○ Testing from an office connection on 1gbit fibre is
different from home over a VPN, which is different
from a 3G network etc.

○ Timeouts are the norm, so test for them from the start

 Lecture 2 - Launching a New Service

– Common Problems

○ Not enough resources

○ Do capacity planning at the beginning, order hardware
as soon as is reasonably possible

○ Having SAs join stand-ups, or weekly meetings will
help catch assumptions and set expectations about
capacity early on

 Lecture 2 - Launching a New Service

– Common Problems

○ New technology failures

○ Sometimes new technologies are decided upon
without those involved communicating how difficult
they are to set up, monitor, scale

○ Best approach is to set up, destroy, and repeat until
the process is completely automated, before going
into production

 Lecture 2 - Launching a New Service

– Common Problems

○ Lack of User training

○ Users get used to things very quickly, and many are
averse to change

○ Overhauls and new services can be very disruptive

○ Having a dedicated staging area for training is helpful

 Lecture 2 - Launching a New Service

– Common Problems

○ No backups

○ Happens everywhere: “we’ll do backups at the end”
■ Then you have file servers that are out of sync
■ Or database snapshots that take too long

○ Worse than no backups, are untested backups. They’re
a waste of people’s time designing them, computing
resources, and give a false sense of security

