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   Class 7 - Encryption, Security

– Final exam:

○ Date - location TBD

○ In person

○ Open book

○ Cumulative



   Class 7 - Encryption, Security

– Backups review:

○ The importance of offsite backups:

https://www.reuters.com/article/us-france-ovh-fire/fire-breaks
-out-in-ovh-building-in-strasbourg-france-idUSKBN2B20NU

https://www.reuters.com/article/us-france-ovh-fire/fire-breaks-out-in-ovh-building-in-strasbourg-france-idUSKBN2B20NU
https://www.reuters.com/article/us-france-ovh-fire/fire-breaks-out-in-ovh-building-in-strasbourg-france-idUSKBN2B20NU
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– First some notes:

○ I *will* be oversimplifying or eliding details of some algorithms or 
maths in this Class - good crypto is hard!

○ However, as an SA the principles are important, regardless of 
implementation details, and I’m confident explaining those, so 
here goes!

○ The nature of cryptography (and security) is it has to be nearly 
perfect, or it will eventually fail to a smarter or better financed 
adversary
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– Cryptography principle 0

○ Never design your own cryptography system

○ You will get it wrong, someone will find a weakness

○ Idea is affectionately called Schneier’s Law

○ An example analogy:

■ If you wouldn’t design and strap yourself to your own rocket, 
you probably shouldn’t design your own cryptosystem

https://www.schneier.com/blog/archives/2011/04/schneiers_law.html
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– Cryptography resources
○ Menezes, A. J., C., V. O., & Vanstone, S. A. (2001). Handbook of 

applied cryptography. Boca Raton: CRC Press. 
■ Available free: https://cacr.uwaterloo.ca/hac/ 

○ https://crypto.stackexchange.com - It is the best kind of pedantry 
The links to primary and secondary sources are especially helpful

○ NIST Federal Information Processing Standards (FIPS)

○ Wiki.openssl.org

○ To prove crypto is ‘fun’ see Schneier Facts

http://cacr.uwaterloo.ca/hac/
https://crypto.stackexchange.com
https://csrc.nist.gov/publications
https://wiki.openssl.org
http://www.schneierfacts.com/facts/top
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– Cryptography resources

○ Full course in breaking crypto systems (in order to learn about them in 
a practical way) here: https://cryptopals.com/ 

https://cryptopals.com/


   Class 7 - Encryption, Security

– Cryptographic attacks

○ I’m not going to cover them since there are so many, but here are 
some side-channel (non-cryptographic) attacks that can be more 
effective than finding mathematical weaknesses in a crypto system
■ Black-bag cryptanalysis - physical theft
■ Man-in-the-middle attack - eavesdropping
■ Power analysis - what it says, crazy cool
■ Replay attack - replay encrypted data, e.g. WEP, WPA Handshake
■ Rubber-hose cryptanalysis - physical or psychological torture
■ Timing analysis - using CPU timings to glean information

https://en.wikipedia.org/wiki/Attack_model
https://en.wikipedia.org/wiki/Black-bag_cryptanalysis
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Power_analysis
https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Rubber-hose_cryptanalysis
https://en.wikipedia.org/wiki/Timing_attack
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– Cryptography basics

○ Alice, Bob, Eve are the main actors who we’ll encounter

○ Typical scenario is Alice and Bob want to communicate privately, 
and Eve wants to know what they’re saying

○ Plaintext (message) is what they’re communicating

○ Ciphertext is the encrypted version of the message
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– Cryptography basics
○ Key is the secret that is mixed with plaintext in an encryption 

algorithm to produce a ciphertext

○ Keyspace is the size of all possible key values, e.g. 2^2048

○ Key schedule is an algorithm that expands a key from say, 128 bits 
to thousands of bits for later use in an encryption operation

○ Block cipher algorithms operate on chunks of data at a time

○ Stream cipher algorithms operate on bits of data at a time
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What does encryption
Look like?

From HAC ch1 p.13

E - encryption function
D - decryption function
m - message
c - ciphertext



   Class 7 - Encryption, Security

– Cryptographic operations:

○ Substitution: A=C, B=D, C=E, D=F - Caesar cipher

○ Transposition: plaintext is reordered

○ Bitwise operation: bits are XOR’ed

○ Round: composition of operation(s) on a plaintext

https://en.wikipedia.org/wiki/Substitution_cipher
https://en.wikipedia.org/wiki/Transposition_cipher
https://en.wikipedia.org/wiki/Exclusive_or#Computer_science


   Class 7 - Encryption, Security

– Cryptographic operations (from HAC, ch1, p.20):

○ Substitution in a round adds confusion to a ciphertext

■ Idea is to make the relationship between encryption key and 
ciphertext appear complex

○ Transposition adds diffusion to a ciphertext

■ Idea is to rearrange and spread out non-uniform bits in a 
message to statistical patterns, common letter combinations
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– Cryptography basics

○ XOR:

■ 1 XOR 1 = 0
■ 1 XOR 0 = 1
■ 0 XOR 1 = 1
■ 0 XOR 0 = 0

○ Tie in to last week’s RAID5/6 Class and how XOR & parity works: 
https://igoro.com/archive/how-raid-6-dual-parity-calculation-works

https://igoro.com/archive/how-raid-6-dual-parity-calculation-works
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– Cryptographic Hash functions

– Map an input of any arbitrary length binary string to a fixed length 
unique binary string (hash) that represents the input

– Take the string `itec2210.ca` and run it through a hashing algorithm (use 
a terminal on your VM):

○ echo 'itec2210.ca' |md5
b44f302d2e8f77c54455ce7b7b6f08ba

○ python -c 'print("A"*100)' |md5
0d6aa8e34b2af058d6e4a27d7ff511dd 
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– Cryptographic Hash functions

– python -c 'print("A"*100)' |md5
       0d6aa8e34b2af058d6e4a27d7ff511dd

– No matter how long the input, output is always 128 bits

– Likewise with SHA1/2/3, e.g:

– python -c 'print("A"*100)' | shasum -a 256
f76262cff1f14a9eb92d57ac0de2b8dc431f3c0fe3e88f9394140f6802406
6b7  -
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– Cryptographic Hash functions

– Now repeat the same input to the algorithm:

– python -c 'print("A"*100)' | shasum -a 256
f76262cff1f14a9eb92d57ac0de2b8dc431f3c0fe3e88f9394140f6802406
6b7  -

– python -c 'print("A"*100)' | shasum -a 256
f76262cff1f14a9eb92d57ac0de2b8dc431f3c0fe3e88f9394140f6802406
6b7  -

– python -c 'print("A"*100)' | shasum -a 256
f76262cff1f14a9eb92d57ac0de2b8dc431f3c0fe3e88f9394140f6802406
6b7  -
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– Cryptographic Hash functions

– Notice how the output never changes?

– The same input will always produce the same set of output bits

– Enables checking things like:
○ File contents are unmodified
○ Encrypted data is intact
○ Email message signatures
○ Password entries in databases
○ TLS browser encryption
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– Cryptographic Hash functions

– Map an input of any arbitrary length binary string to a fixed length 
unique binary string (hash) that represents the input

– It should be difficult to find two separate inputs that map to the same 
hash output (a collision) (SHA-1 bruteforce odds being 2^80, or 1.2x10^24)

– 1,200,000,000,000,000,000,000,000

– Moreover, given a hash, it should be infeasible to work backwards and 
find an input: algorithm is not reversible

– But wait:
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– Cryptographic Hash functions

– Common hashing functions you’ll encounter:

○ MD5 - BROKEN
○ SHA-1 - BROKEN 
○ SHA-2 - current standard but getting weaker against attacks
○ SHA-3 - recently released (as of 2015), variable length digests
○ Bcrypt - can be made to run arbitrarily slow to prevent bruteforce 
○ Hash functions have lifetimes of decades at best
○ As computer power grows, speed of finding collisions  does too

https://www.schneier.com/essays/archives/2004/08/cryptanalysis_of_md5.html
http://shattered.io
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Bcrypt
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– Cryptographic Hash functions

– Used extensively to create digital signatures, like SSL/TLS certificates, 
document signatures, email encryption

– Also used to ensure data integrity, like file transfers over untrusted 
networks, e.g. Debian, Ubuntu, RedHat, Fedora, software repositories

○ http://centos.mirror.iweb.ca/7/extras/x86_64/repodata/repomd.xml.asc
○ http://centos.mirror.iweb.ca/7/extras/x86_64/repodata/repomd.xml

– Note: signature is a hash of the data, which is then encrypted with the 
private key - later we’ll see how the public key decrypts the signature

http://centos.mirror.iweb.ca/7/extras/x86_64/repodata/repomd.xml.asc
http://centos.mirror.iweb.ca/7/extras/x86_64/repodata/repomd.xml
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– Symmetric and Asymmetric encryption

– Symmetric - both parties share a secret encryption key
○ Can be block or stream based
○ AES is the current generally accepted standard for symmetric 

(block) encryption
○ AES encryption algorithm uses 16 byte blocks
○ Example would be a passphrase on an encrypted disk volume

○ RC4 is an example of a (broken) stream cipher
■ WEP encryption used RC4 in Initialization Vector (IV)

○ Many block ciphers can be used in stream mode
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– Symmetric and Asymmetric encryption

– IV aside - visit wikipedia article, it is very helpful

○ Initialization vector or starting value is used to ensure that 
repeated use of a key on duplicate plaintext results in different 
ciphertext

○ Usually IV is mixed with key in the algorithm’s state machine as 
part of a key schedule or keystream

○ In most block cipher modes IV will be stored with a block of 
ciphertext

https://en.wikipedia.org/wiki/Initialization_vector
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– Symmetric encryption

– HAC ch1 p.16
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– Symmetric Encryption - AES

– Designed by extensive consultation with cryptography community and 
standards bodies

– Intent was to replace DES (2^56 bit key combinations, 7.2x10^16)

– AES has:

○ 2^128  or 3.4 x 1038 possible keys (128-bit);
○ 2^192 or 6.2 x 1057 possible keys (192-bit); and
○ 2^256 or 1.1 x 1077 possible keys (256-bit)
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– AES

○ “Assuming that one could build a machine that could recover a DES 
key in a second (i.e., try 255 keys per second)

○ then it would take that machine approximately 149 
thousand-billion (149 trillion) years to crack a 128-bit AES key.

○ To put that into perspective, the universe is believed to be less 
than 20 billion years old” (Since AES was published, WMAP 
determined it is likely 13.77 ± 0.059 billion years)

https://web.archive.org/web/20020211162045/http://csrc.nist.gov:80/encryption/aes/round2/aesfact.html
https://map.gsfc.nasa.gov/news/
https://map.gsfc.nasa.gov/news/
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– AES

– So what does AES actually look like?

– https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Anim
ation_v4_eng-html5.html

– It is worth taking your time with it

https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html
https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html
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– Symmetric and Asymmetric encryption

– Asymmetric (AKA Public Key) 

○ Designed around a pair of large prime numbers (key pair) and 
some modular arithmetic, with one number being private, and the 
other public

○ The public key is used to encrypt a value, which only the private 
key can decrypt

○ Example would be RSA algorithm, used for PGP/GPG
○ Think of it like a locked mailbox where anyone can put a letter in, 

but can’t take a letter out without the key
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– Recall symmetric encryption

– HAC ch1 p.16
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– This is asymmetric encryption

– HAC ch1 p.28
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http://www.youtube.com/watch?v=GSIDS_lvRv4
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– Cryptographic hash used for digital signature

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10520_.htm 

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10520_.htm
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– Asymmetric encryption

○ Public key can encrypt a message that can only be decrypted with 
the private key
■ Used for secure communication

○ Private key can encrypt a message that can only be decrypted with 
the public key
■ Used for authentication and signatures

○ Bear with me here, the idea is to see that the following works
○ Recall modulus arithmetic: 10 mod 3 ≡ 1
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– Asymmetric RSA encryption (from HAC ch8 p.286)

– Algorithm components are:
○ 1. Generate two large random (and distinct) primes p and q, each 

roughly the same size
○ 2. Compute n = pq and φ = (p − 1)(q − 1)
○ 3. Select a random integer e, 1 < e < φ, such that gcd(e, φ) = 1 (e is 

coprime with phi, that is, their only common divisor is 1)
○ 4. Use the extended Euclidean algorithm (Algorithm 2.107) to 

compute the unique integer d, 1 < d < φ, such that ed ≡ 1 (mod φ)
○ Otherwise expressed as ed / φ = 1
○ 5. A’s public key is (n, e); A’s private key is d
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– Asymmetric RSA encryption (from HAC ch8 p.286)

– Example:

○ https://simple.wikipedia.org/wiki/RSA_(algorithm) 

https://simple.wikipedia.org/wiki/RSA_(algorithm)
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– Asymmetric RSA encryption (from HAC ch8)

– That e part
○ 3 is a good candidate because it makes small values for 

computation, but can lead to broken encryption if the same 
message is sent to multiple recipients

○ 65537 is a good value, because it is 0x10001 in hex, or 
10000000000000001 in binary which makes for easy computation

○ Take a look at an OpenSSL generated RSA certificate, it is likely 
that it will use this value. Also ‘openssl genrsa -h’

○ Many RSA implementations choose e first, then check that phi is 
coprime with e
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– Asymmetric RSA encryption

– Alice and Bob can now communicate securely with each other by 
encrypting messages with the other person’s public key

– They can also sign their own messages to prove to the other person that 
they were the original sender, and that the encrypted message was not 
tampered with in transit

– Eve can listen in all she likes, and if Bob and Alice chose some large 
primes, Eve probably won’t decrypt any messages until after the heat 
death of the universe
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– Now, brief X.509/SSL/TLS certificate aside - remember this?

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10520_.htm 

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10520_.htm
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– Now, brief X.509/SSL/TLS certificate aside

– RSA is one possible algorithm in this signing and hashing scheme

– ‘Plaintext’ is set of fields, like domain name, location, expiry dates

– As well as e and n from the RSA keypair (public key)

– A 3rd party Certificate Authority (CA) digitally signs the certificate 
with their private key, essentially validating you are who you say you are 
in the certificate
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– Now, brief X.509/SSL/TLS certificate aside

– /etc/ssl/certs on your VM contains 3rd party CA (certificate authority) 
certs, tools like curl, apt rely on these for security

– Your browser and OS will also contain a vetted list of CA certificates

– You can validate a certificate that a CA has signed with their private RSA 
key based on the  principle of reversing encryption using the public key

– Say, for example, a bank’s TLS certificate, which itself has a public RSA 
key in it. Use the key to decrypt signatures, and encrypt messages
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– Asymmetric encryption

– Ok, back to Bob and Alice

– What if Alice and Bob have never met, but want to exchange messages 
using a shared secret key?
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– Enter Diffie-Hellman algorithm

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange 

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
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– Diffie-Hellman key exchange

– Logjam vulnerability

– See also cloudflare

https://weakdh.org/
https://blog.cloudflare.com/logjam-the-latest-tls-vulnerability-explained/
http://www.youtube.com/watch?v=YEBfamv-_do
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– Putting it all together

– What if two parties who have never met would like to exchange secure 
messages? Say a credit card transaction online

– Recall our tools so far:
○ Hash functions - SHA-1, SHA-2, SHA-3, MD5 
○ Symmetric ciphers - block and stream, AES, ChaCha20
○ Asymmetric encryption

■ RSA algorithm
■ DH algorithm

○ X509/SSL/TLS certificates containing CA signed public keys
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– TLS handshake

“When a TLS client and server first start communicating, 
they agree on a protocol version, select cryptographic 
algorithms, optionally authenticate each other, and use 
public-key encryption techniques to generate shared 
secrets.”

– TLS parameters

https://tools.ietf.org/html/rfc5246#section-7.3
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
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https://blog.cloudflare.com/content/images/2014/Sep/ssl_handshake_diffie_hellman.jpg
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– Best Explanation I’ve seen:

○ https://tls12.xargs.org/

– To be continued next week!

https://tls12.xargs.org/

