
Instructor: Jamon Camisso
ITEC 2210 Chat: mattermost.itec2210.ca
Email: jamon@yorku.ca
Website: https://eclass.yorku.ca/

Date/Time: Wednesday, 19:00-22:00
Location: Zoom / ACE 003
Office hours: Via Mattermost any time

AP/ITEC 2210 3.0 A:
System Administration
Fall 2023

https://mattermost.itec2210.ca
mailto:jamon@yorku.ca
https://eclass.yorku.ca/eclass/course/view.php?id=3805

 Class 7 - Encryption, Security

– Final exam:

○ Date - location TBD

○ In person

○ Open book

○ Cumulative

 Class 7 - Encryption, Security

– Backups review:

○ The importance of offsite backups:

https://www.reuters.com/article/us-france-ovh-fire/fire-breaks
-out-in-ovh-building-in-strasbourg-france-idUSKBN2B20NU

https://www.reuters.com/article/us-france-ovh-fire/fire-breaks-out-in-ovh-building-in-strasbourg-france-idUSKBN2B20NU
https://www.reuters.com/article/us-france-ovh-fire/fire-breaks-out-in-ovh-building-in-strasbourg-france-idUSKBN2B20NU

 Class 7 - Encryption, Security

 Class 7 - Encryption, Security

– First some notes:

○ I *will* be oversimplifying or eliding details of some algorithms or
maths in this Class - good crypto is hard!

○ However, as an SA the principles are important, regardless of
implementation details, and I’m confident explaining those, so
here goes!

○ The nature of cryptography (and security) is it has to be nearly
perfect, or it will eventually fail to a smarter or better financed
adversary

 Class 7 - Encryption, Security

– Cryptography principle 0

○ Never design your own cryptography system

○ You will get it wrong, someone will find a weakness

○ Idea is affectionately called Schneier’s Law

○ An example analogy:

■ If you wouldn’t design and strap yourself to your own rocket,
you probably shouldn’t design your own cryptosystem

https://www.schneier.com/blog/archives/2011/04/schneiers_law.html

 Class 7 - Encryption, Security

– Cryptography resources
○ Menezes, A. J., C., V. O., & Vanstone, S. A. (2001). Handbook of

applied cryptography. Boca Raton: CRC Press.
■ Available free: https://cacr.uwaterloo.ca/hac/

○ https://crypto.stackexchange.com - It is the best kind of pedantry
The links to primary and secondary sources are especially helpful

○ NIST Federal Information Processing Standards (FIPS)

○ Wiki.openssl.org

○ To prove crypto is ‘fun’ see Schneier Facts

http://cacr.uwaterloo.ca/hac/
https://crypto.stackexchange.com
https://csrc.nist.gov/publications
https://wiki.openssl.org
http://www.schneierfacts.com/facts/top

 Class 7 - Encryption, Security

– Cryptography resources

○ Full course in breaking crypto systems (in order to learn about them in
a practical way) here: https://cryptopals.com/

https://cryptopals.com/

 Class 7 - Encryption, Security

– Cryptographic attacks

○ I’m not going to cover them since there are so many, but here are
some side-channel (non-cryptographic) attacks that can be more
effective than finding mathematical weaknesses in a crypto system
■ Black-bag cryptanalysis - physical theft
■ Man-in-the-middle attack - eavesdropping
■ Power analysis - what it says, crazy cool
■ Replay attack - replay encrypted data, e.g. WEP, WPA Handshake
■ Rubber-hose cryptanalysis - physical or psychological torture
■ Timing analysis - using CPU timings to glean information

https://en.wikipedia.org/wiki/Attack_model
https://en.wikipedia.org/wiki/Black-bag_cryptanalysis
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Power_analysis
https://en.wikipedia.org/wiki/Replay_attack
https://en.wikipedia.org/wiki/Rubber-hose_cryptanalysis
https://en.wikipedia.org/wiki/Timing_attack

 Class 7 - Encryption, Security

– Cryptography basics

○ Alice, Bob, Eve are the main actors who we’ll encounter

○ Typical scenario is Alice and Bob want to communicate privately,
and Eve wants to know what they’re saying

○ Plaintext (message) is what they’re communicating

○ Ciphertext is the encrypted version of the message

 Class 7 - Encryption, Security

– Cryptography basics
○ Key is the secret that is mixed with plaintext in an encryption

algorithm to produce a ciphertext

○ Keyspace is the size of all possible key values, e.g. 2^2048

○ Key schedule is an algorithm that expands a key from say, 128 bits
to thousands of bits for later use in an encryption operation

○ Block cipher algorithms operate on chunks of data at a time

○ Stream cipher algorithms operate on bits of data at a time

 Class 7 - Encryption, Security

What does encryption
Look like?

From HAC ch1 p.13

E - encryption function
D - decryption function
m - message
c - ciphertext

 Class 7 - Encryption, Security

– Cryptographic operations:

○ Substitution: A=C, B=D, C=E, D=F - Caesar cipher

○ Transposition: plaintext is reordered

○ Bitwise operation: bits are XOR’ed

○ Round: composition of operation(s) on a plaintext

https://en.wikipedia.org/wiki/Substitution_cipher
https://en.wikipedia.org/wiki/Transposition_cipher
https://en.wikipedia.org/wiki/Exclusive_or#Computer_science

 Class 7 - Encryption, Security

– Cryptographic operations (from HAC, ch1, p.20):

○ Substitution in a round adds confusion to a ciphertext

■ Idea is to make the relationship between encryption key and
ciphertext appear complex

○ Transposition adds diffusion to a ciphertext

■ Idea is to rearrange and spread out non-uniform bits in a
message to statistical patterns, common letter combinations

 Class 7 - Encryption, Security

– Cryptography basics

○ XOR:

■ 1 XOR 1 = 0
■ 1 XOR 0 = 1
■ 0 XOR 1 = 1
■ 0 XOR 0 = 0

○ Tie in to last week’s RAID5/6 Class and how XOR & parity works:
https://igoro.com/archive/how-raid-6-dual-parity-calculation-works

https://igoro.com/archive/how-raid-6-dual-parity-calculation-works

 Class 7 - Encryption, Security

– Cryptographic Hash functions

– Map an input of any arbitrary length binary string to a fixed length
unique binary string (hash) that represents the input

– Take the string `itec2210.ca` and run it through a hashing algorithm (use
a terminal on your VM):

○ echo 'itec2210.ca' |md5
b44f302d2e8f77c54455ce7b7b6f08ba

○ python -c 'print("A"*100)' |md5
0d6aa8e34b2af058d6e4a27d7ff511dd

 Class 7 - Encryption, Security

– Cryptographic Hash functions

– python -c 'print("A"*100)' |md5
 0d6aa8e34b2af058d6e4a27d7ff511dd

– No matter how long the input, output is always 128 bits

– Likewise with SHA1/2/3, e.g:

– python -c 'print("A"*100)' | shasum -a 256
f76262cff1f14a9eb92d57ac0de2b8dc431f3c0fe3e88f9394140f6802406
6b7 -

 Class 7 - Encryption, Security

– Cryptographic Hash functions

– Now repeat the same input to the algorithm:

– python -c 'print("A"*100)' | shasum -a 256
f76262cff1f14a9eb92d57ac0de2b8dc431f3c0fe3e88f9394140f6802406
6b7 -

– python -c 'print("A"*100)' | shasum -a 256
f76262cff1f14a9eb92d57ac0de2b8dc431f3c0fe3e88f9394140f6802406
6b7 -

– python -c 'print("A"*100)' | shasum -a 256
f76262cff1f14a9eb92d57ac0de2b8dc431f3c0fe3e88f9394140f6802406
6b7 -

 Class 7 - Encryption, Security

– Cryptographic Hash functions

– Notice how the output never changes?

– The same input will always produce the same set of output bits

– Enables checking things like:
○ File contents are unmodified
○ Encrypted data is intact
○ Email message signatures
○ Password entries in databases
○ TLS browser encryption

 Class 7 - Encryption, Security

– Cryptographic Hash functions

– Map an input of any arbitrary length binary string to a fixed length
unique binary string (hash) that represents the input

– It should be difficult to find two separate inputs that map to the same
hash output (a collision) (SHA-1 bruteforce odds being 2^80, or 1.2x10^24)

– 1,200,000,000,000,000,000,000,000

– Moreover, given a hash, it should be infeasible to work backwards and
find an input: algorithm is not reversible

– But wait:

 Class 7 - Encryption, Security

– Cryptographic Hash functions

– Common hashing functions you’ll encounter:

○ MD5 - BROKEN
○ SHA-1 - BROKEN
○ SHA-2 - current standard but getting weaker against attacks
○ SHA-3 - recently released (as of 2015), variable length digests
○ Bcrypt - can be made to run arbitrarily slow to prevent bruteforce
○ Hash functions have lifetimes of decades at best
○ As computer power grows, speed of finding collisions does too

https://www.schneier.com/essays/archives/2004/08/cryptanalysis_of_md5.html
http://shattered.io
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Bcrypt

 Class 7 - Encryption, Security

– Cryptographic Hash functions

– Used extensively to create digital signatures, like SSL/TLS certificates,
document signatures, email encryption

– Also used to ensure data integrity, like file transfers over untrusted
networks, e.g. Debian, Ubuntu, RedHat, Fedora, software repositories

○ http://centos.mirror.iweb.ca/7/extras/x86_64/repodata/repomd.xml.asc
○ http://centos.mirror.iweb.ca/7/extras/x86_64/repodata/repomd.xml

– Note: signature is a hash of the data, which is then encrypted with the
private key - later we’ll see how the public key decrypts the signature

http://centos.mirror.iweb.ca/7/extras/x86_64/repodata/repomd.xml.asc
http://centos.mirror.iweb.ca/7/extras/x86_64/repodata/repomd.xml

 Class 7 - Encryption, Security

– Symmetric and Asymmetric encryption

– Symmetric - both parties share a secret encryption key
○ Can be block or stream based
○ AES is the current generally accepted standard for symmetric

(block) encryption
○ AES encryption algorithm uses 16 byte blocks
○ Example would be a passphrase on an encrypted disk volume

○ RC4 is an example of a (broken) stream cipher
■ WEP encryption used RC4 in Initialization Vector (IV)

○ Many block ciphers can be used in stream mode

 Class 7 - Encryption, Security

– Symmetric and Asymmetric encryption

– IV aside - visit wikipedia article, it is very helpful

○ Initialization vector or starting value is used to ensure that
repeated use of a key on duplicate plaintext results in different
ciphertext

○ Usually IV is mixed with key in the algorithm’s state machine as
part of a key schedule or keystream

○ In most block cipher modes IV will be stored with a block of
ciphertext

https://en.wikipedia.org/wiki/Initialization_vector

 Class 7 - Encryption, Security

– Symmetric encryption

– HAC ch1 p.16

 Class 7 - Encryption, Security

– Symmetric Encryption - AES

– Designed by extensive consultation with cryptography community and
standards bodies

– Intent was to replace DES (2^56 bit key combinations, 7.2x10^16)

– AES has:

○ 2^128 or 3.4 x 1038 possible keys (128-bit);
○ 2^192 or 6.2 x 1057 possible keys (192-bit); and
○ 2^256 or 1.1 x 1077 possible keys (256-bit)

 Class 7 - Encryption, Security

– AES

○ “Assuming that one could build a machine that could recover a DES
key in a second (i.e., try 255 keys per second)

○ then it would take that machine approximately 149
thousand-billion (149 trillion) years to crack a 128-bit AES key.

○ To put that into perspective, the universe is believed to be less
than 20 billion years old” (Since AES was published, WMAP
determined it is likely 13.77 ± 0.059 billion years)

https://web.archive.org/web/20020211162045/http://csrc.nist.gov:80/encryption/aes/round2/aesfact.html
https://map.gsfc.nasa.gov/news/
https://map.gsfc.nasa.gov/news/

 Class 7 - Encryption, Security

– AES

– So what does AES actually look like?

– https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Anim
ation_v4_eng-html5.html

– It is worth taking your time with it

https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html
https://formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng-html5.html

 Class 7 - Encryption, Security

– Symmetric and Asymmetric encryption

– Asymmetric (AKA Public Key)

○ Designed around a pair of large prime numbers (key pair) and
some modular arithmetic, with one number being private, and the
other public

○ The public key is used to encrypt a value, which only the private
key can decrypt

○ Example would be RSA algorithm, used for PGP/GPG
○ Think of it like a locked mailbox where anyone can put a letter in,

but can’t take a letter out without the key

 Class 7 - Encryption, Security

– Recall symmetric encryption

– HAC ch1 p.16

 Class 7 - Encryption, Security

– This is asymmetric encryption

– HAC ch1 p.28

 Class 7 - Encryption, Security

http://www.youtube.com/watch?v=GSIDS_lvRv4

 Class 7 - Encryption, Security

– Cryptographic hash used for digital signature

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10520_.htm

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10520_.htm

 Class 7 - Encryption, Security

– Asymmetric encryption

○ Public key can encrypt a message that can only be decrypted with
the private key
■ Used for secure communication

○ Private key can encrypt a message that can only be decrypted with
the public key
■ Used for authentication and signatures

○ Bear with me here, the idea is to see that the following works
○ Recall modulus arithmetic: 10 mod 3 ≡ 1

 Class 7 - Encryption, Security

– Asymmetric RSA encryption (from HAC ch8 p.286)

– Algorithm components are:
○ 1. Generate two large random (and distinct) primes p and q, each

roughly the same size
○ 2. Compute n = pq and φ = (p − 1)(q − 1)
○ 3. Select a random integer e, 1 < e < φ, such that gcd(e, φ) = 1 (e is

coprime with phi, that is, their only common divisor is 1)
○ 4. Use the extended Euclidean algorithm (Algorithm 2.107) to

compute the unique integer d, 1 < d < φ, such that ed ≡ 1 (mod φ)
○ Otherwise expressed as ed / φ = 1
○ 5. A’s public key is (n, e); A’s private key is d

 Class 7 - Encryption, Security

– Asymmetric RSA encryption (from HAC ch8 p.286)

– Example:

○ https://simple.wikipedia.org/wiki/RSA_(algorithm)

https://simple.wikipedia.org/wiki/RSA_(algorithm)

 Class 7 - Encryption, Security

– Asymmetric RSA encryption (from HAC ch8)

– That e part
○ 3 is a good candidate because it makes small values for

computation, but can lead to broken encryption if the same
message is sent to multiple recipients

○ 65537 is a good value, because it is 0x10001 in hex, or
10000000000000001 in binary which makes for easy computation

○ Take a look at an OpenSSL generated RSA certificate, it is likely
that it will use this value. Also ‘openssl genrsa -h’

○ Many RSA implementations choose e first, then check that phi is
coprime with e

 Class 7 - Encryption, Security

– Asymmetric RSA encryption

– Alice and Bob can now communicate securely with each other by
encrypting messages with the other person’s public key

– They can also sign their own messages to prove to the other person that
they were the original sender, and that the encrypted message was not
tampered with in transit

– Eve can listen in all she likes, and if Bob and Alice chose some large
primes, Eve probably won’t decrypt any messages until after the heat
death of the universe

 Class 7 - Encryption, Security

– Now, brief X.509/SSL/TLS certificate aside - remember this?

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10520_.htm

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10520_.htm

 Class 7 - Encryption, Security

– Now, brief X.509/SSL/TLS certificate aside

– RSA is one possible algorithm in this signing and hashing scheme

– ‘Plaintext’ is set of fields, like domain name, location, expiry dates

– As well as e and n from the RSA keypair (public key)

– A 3rd party Certificate Authority (CA) digitally signs the certificate
with their private key, essentially validating you are who you say you are
in the certificate

 Class 7 - Encryption, Security

– Now, brief X.509/SSL/TLS certificate aside

– /etc/ssl/certs on your VM contains 3rd party CA (certificate authority)
certs, tools like curl, apt rely on these for security

– Your browser and OS will also contain a vetted list of CA certificates

– You can validate a certificate that a CA has signed with their private RSA
key based on the principle of reversing encryption using the public key

– Say, for example, a bank’s TLS certificate, which itself has a public RSA
key in it. Use the key to decrypt signatures, and encrypt messages

 Class 7 - Encryption, Security

– Asymmetric encryption

– Ok, back to Bob and Alice

– What if Alice and Bob have never met, but want to exchange messages
using a shared secret key?

 Class 7 - Encryption, Security

– Enter Diffie-Hellman algorithm

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

 Class 7 - Encryption, Security

– Diffie-Hellman key exchange

– Logjam vulnerability

– See also cloudflare

https://weakdh.org/
https://blog.cloudflare.com/logjam-the-latest-tls-vulnerability-explained/
http://www.youtube.com/watch?v=YEBfamv-_do

 Class 7 - Encryption, Security

– Putting it all together

– What if two parties who have never met would like to exchange secure
messages? Say a credit card transaction online

– Recall our tools so far:
○ Hash functions - SHA-1, SHA-2, SHA-3, MD5
○ Symmetric ciphers - block and stream, AES, ChaCha20
○ Asymmetric encryption

■ RSA algorithm
■ DH algorithm

○ X509/SSL/TLS certificates containing CA signed public keys

 Class 7 - Encryption, Security

– TLS handshake

“When a TLS client and server first start communicating,
they agree on a protocol version, select cryptographic
algorithms, optionally authenticate each other, and use
public-key encryption techniques to generate shared
secrets.”

– TLS parameters

https://tools.ietf.org/html/rfc5246#section-7.3
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4

 Class 7 - Encryption, Security

https://blog.cloudflare.com/content/images/2014/Sep/ssl_handshake_diffie_hellman.jpg

 Class 7 - Encryption, Security

– Best Explanation I’ve seen:

○ https://tls12.xargs.org/

– To be continued next week!

https://tls12.xargs.org/

